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Why land-atmosphere 
interactions are important 

to global change?
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Missing Missing 
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Constant ABLConstant ABL

Dynamic ABLDynamic ABL

ABL= Atmospheric boundary layerABL= Atmospheric boundary layer (Denning et al., 1995)(Denning et al., 1995)

Why land-atmosphere 
interactions are important?



Measuring CO2 by eddy flux tower
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WLEF tall tower (447m) (Yi et al., JGR 2000 )(Yi et al., JGR 2000 )



Measuring boundary layer evolution
by 915-MHz ABL profiling radar

(Yi et al., JAS 2001 )(Yi et al., JAS 2001 )
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Canopy layer is Canopy layer is 
more complex more complex 
and important!and important!

Photosynthesis, respirationPhotosynthesis, respiration

COCO22 HH22OO

VOC CHVOC CH44

Absorber and producerAbsorber and producer

Turbulence nature

Turbulence nature

affects reaction rate

affects reaction rate

AerodynamicsAerodynamics

Classic theoriesClassic theories
do not workdo not work

No transport theory No transport theory 
within canopywithin canopy



Why classic turbulent 
theories do not work 

within canopies?
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Von KarmanVon Karman’’s similarity hypothesiss similarity hypothesis
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Velocity-Squared Law
     DDrag C SVρ=

EdmeEdme MariotteMariotte 1673 1673 ChristiaanChristiaan Huygens 1699 Huygens 1699 
Sir Sir IssacIssac Newton 1687 Newton 1687 

NavierNavier in 1822 in 1822 Stokes in 1845 Stokes in 1845 PrandtlPrandtl in 1905 in 1905 
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““……the friction velocity is the artificial but related velocity forthe friction velocity is the artificial but related velocity for
which the square law holds exactlywhich the square law holds exactly””--Sutton Sutton (1953, pp.76)(1953, pp.76)

Taylor (1916) was first to test the validity of the velocityTaylor (1916) was first to test the validity of the velocity--squared law on squared law on 
the earththe earth’’s surface and estimated its drag coefficient values.s surface and estimated its drag coefficient values.
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The mixing length theory has achieved remarkable success. Thom (The mixing length theory has achieved remarkable success. Thom (1971) 1971) 
rationalized the physical connection between length scale and verationalized the physical connection between length scale and velocity scale.locity scale.
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Exponential
flux layer
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0mK <
Negative viscosityNegative viscosity XX

( )u z

Why classic theories do not Why classic theories do not 
work within canopy.work within canopy.
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New developments in 
canopy flow theory
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Momentum Transfer RateMomentum Transfer Rate
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u wτ ρ ′ ′= − 2uρ∝

momentum uρ=  flow deceleration
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Local Equilibrium HypothesesLocal Equilibrium Hypotheses

momentum transfer rate = momentum loss ratemomentum transfer rate = momentum loss rate
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Momentum Equations are closedMomentum Equations are closed
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A Universal RelationshipA Universal Relationship

(Yi, 2007)(Yi, 2007)



Dimensional AnalysisDimensional Analysis
(Buckingham Pi theorem)(Buckingham Pi theorem)
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Comparison with the High-Order Closure 

The highThe high--order order 
closure simulationsclosure simulations

ObservedObserved
leaf area leaf area 
densitydensity
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CMT predictions versus observations
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ConclusionsConclusions
The robust agreements between the theoretical The robust agreements between the theoretical 
predictions and observations indicate that the nature predictions and observations indicate that the nature 
of momentum transfer within canopies can be well of momentum transfer within canopies can be well 
understood by the CMT theory. understood by the CMT theory. 

QuestionsQuestions
What are canopy MASS and ENERGY transfer What are canopy MASS and ENERGY transfer 
theories? theories? 



Super-Stable 
Layer Theory



Advection issues on eddy flux measurementsAdvection issues on eddy flux measurements

Super-stable layer, flow separation (Yi et al., 2005)

Courtesy to Courtesy to JielunJielun SunSun



A super stable layer 
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SF6 experiments
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Horizontal COHorizontal CO22 gradient in summergradient in summer

Yi et al. 2007Yi et al. 2007

Super stable layerSuper stable layer



Keeling PlotKeeling Plot



Apply the computational fluid Apply the computational fluid 
dynamics (CFD) approach to dynamics (CFD) approach to 
simulate canopy flowsimulate canopy flow



RenormalizationRenormalization--group       turbulence modelgroup       turbulence model

Leaf area density and drag coefficient profile Leaf area density and drag coefficient profile 
derived from the analytical model were used derived from the analytical model were used 

k-ε

Yi et al. 2005Yi et al. 2005



‘‘SS’’--shaped wind profileshaped wind profile

rθ θ< Cold inflowCold inflow

Yi et al. 2005Yi et al. 2005



Chimney phenomenonChimney phenomenon

rθ θ≥ Warm inflowWarm inflow

Yi et al. 2007bYi et al. 2007b



OscillationOscillation

rθ θ≈

Yi et al. 2007bYi et al. 2007b
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Steady StatesSteady States

StableStable UnstableUnstableYi et al. 2007bYi et al. 2007b



Synopsis Synopsis 

stable.
unstable.

Oscillation.
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Science

HypothesisHypothesis DeductionsDeductions

ObservationsObservationsFactsFacts

LawLaw



Science stopsScience stops
Faith beginsFaith begins

The holy property The holy property 
of science appearsof science appears

LawLaw DeductionsDeductions

LogicLogic ProvableProvable

You can ask why.You can ask why.

You cannot You cannot 
ask why.ask why.
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