Land/Atmosphere Interface: Importance to Global Change

Chuixiang Yi School of Earth and Environmental Sciences Queens College, City University of New York

Outline

Land/atmosphere interface

Fundamental problems

Progresses

Why land-atmosphere interactions are important to global change?

An example Atmospheric CO₂ rectifier effect

Why land-atmosphere interactions are important?

ABL= Atmospheric boundary layer

(**Denning et al., 1995**)

Measuring CO₂ by eddy flux tower

Measuring boundary layer evolution by 915-MHz ABL profiling radar

Aerodynamics

Classic theories do not work No transport theory within canopy

> Canopy layer is more complex and important!

Why classic turbulent theories do not work within canopies?

Von Karman's similarity hypothesis

 $\ell = \kappa \frac{d\overline{u} / dz}{d^2 \overline{u} / dz^2}$

Von Karman

Prandtl

 $\kappa \approx 0.4$ Z_0 is roughness

Edme Mariotte 1673

Christiaan Huygens 1699

Sir Issac Newton 1687

Velocity-Squared Law $Drag = C_D \rho SV^2$

Navier in 1822 Stokes in 1845

Prandtl in 1905

"...the friction velocity is the artificial but related velocity for which the square law holds exactly"-Sutton (1953, pp.76)

Taylor (1916) was first to test the validity of the velocity-squared law on the earth's surface and estimated its drag coefficient values.

The mixing length theory has achieved remarkable success. Thom (1971) rationalized the physical connection between length scale and velocity scale.

Why classic theories do not work within canopy.

Von Karman similarity rule

$$\ell = \kappa \left| \frac{d\overline{u} / dz}{d^2 \overline{u} / dz^2} \right|$$

$$-\overline{u'w'} = K_m \frac{\partial \overline{u}}{\partial z}$$

New developments in canopy flow theory

$\tau = -\rho \overline{u'w'} \propto \rho \overline{u}^2$ momentum loss rate

average velocity = $\overline{u} / 2$

momentum = $\rho \overline{u}$

$\rho \overline{u} \times \overline{u} / 2 = \rho \overline{u}^2 / 2$

flow deceleration

 $\tau = c_D \rho \overline{u}$

Local Equilibrium Hypotheses

Momentum Equations are closed

 $\frac{\partial u'w'}{\partial z} = c_D(z)a(z)u^2(z)$ $-u'w'(z) = c_D(z)\overline{u}^2(z)$ $d\left(c_D(z)\overline{u}^2(z)\right) = a(z)c_D(z)\overline{u}^2(z)$ $\frac{du'w'(z)}{dz} + a(z)\overline{u'w'}(z) = 0$ dz.

(Yi, 2007)

Uniform Vegetation
$$c_D(z) = c_D$$

 $a(z) = a$ $-\frac{\partial u'w'}{\partial z} = ac_D u^2(z)$

(Yi, 2007)

$$\zeta = z / h, \quad \tilde{\tau} = \tau(z) / \tau_{\rm h}$$

(Yi, 2007)

a (z) = leaf area density (m^2/m^3)

LAI = leaf area index = entire leaf area per m² ground

LAI = leaf area index = entire leaf area per m² ground

A Universal Relationship

(Yi, 2007)

Dimensional Analysis (Buckingham Pi theorem)

 $\begin{bmatrix} \tau & \rho & \overline{u} & \mu & h & a \\ m\ell^{-1}t^{-2} & m\ell^{-3} & \ell t^{-1} & m\ell^{-1}t^{-1} & \ell & \ell^{-1} \end{bmatrix}$ $\tau = f_1(\text{Re}, LAI)\rho\overline{u}^2$

Comparison with the High-Order Closure

CMT predictions versus observations

Conclusions

The robust agreements between the theoretical predictions and observations indicate that the nature of momentum transfer within canopies can be well understood by the CMT theory.

What are canopy MASS and ENERGY transfer theories?

Super-Stable Layer Theory

A super stable layer

Yi et al. 2005

Keeling Plot

Apply the computational fluid dynamics (CFD) approach to simulate canopy flow

Renormalization-group k- ϵ turbulence model

Leaf area density and drag coefficient profile derived from the analytical model were used

Yi et al. 2005

Chimney phenomenon

Oscillation

 $\theta \approx \theta_r$

Steady States

$$\begin{cases} \frac{du_0}{dt} = 0 = f_u(u_0, \theta_0), \\ \frac{d\theta_0}{dt} = 0 = f_\theta(u_0, \theta_0). \end{cases}$$

$$\begin{cases} u_0^{\pm} = \pm \sqrt{\frac{g}{c_D \ell} \left(\frac{\theta_r - \theta_0}{\theta_r}\right)}, \\ \theta_0 = \theta_r \left(1 - \frac{c_D \ell L_{c0}^2}{g \gamma^2 \sin^2 \alpha}\right), \end{cases}$$

$$\theta_r - \theta_0 \ge \theta_c = \frac{\gamma \sin \alpha}{c_D \ell} \approx 0.194 \text{ K}$$

$$\begin{pmatrix} u_0^+, heta_0 \end{pmatrix}$$
 stable.
 $\begin{pmatrix} u_0^-, heta_0 \end{pmatrix}$ unstable

$$0 \le \theta_r - \theta_0 \le \theta_c \approx 0.194$$
 Oscillation.

Yi et al. 2007b

Acknowledgements to

Monson lab, University of Colorado Davis lab, Penn State University Dean Anderson, USGS Andrew Turnipseed, NCAR Peter Bakwin, NOAA/CMDL Zhiqiang Zhai, University of Colorado Lamb lab, Washington State University Denning lab, Colorado State University

Thank you!

Hypothesis

Law

Deductions

Observations

Provable Logic

You cannot ask why.

Law

The holy property of science appears

Contact information

Chuixiang Yi Assistant Professor School of Earth and Environmental Sciences Queens College, City University of New York 65-30 Kissena Blvd Flushing, New York 11367 Phone: 718-997-3366 Fax: 718-997-3299 Email: cyi@qc.cuny.edu <u>http://www.essc.psu.edu/~cxyi</u> <u>http://qcpages.qc.edu/EES/pep/yi.html</u>